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Research Question

How to explain the total counterfactual effect of an action in multi-agent
sequential decision making?

Multi-Agent Sequential

Mediation Analysis aims to understand how causal effects propagate
through different paths in the causal graph. Much prior work [1] focuses on
decomposing causal effects under this rubric.

Problem: In the multi-agent sequential decision making setting, the causal
graph can contain exponentially many paths connecting an action to the
outcome. Furthermore, not all of these paths have a clear operational
meaning to help explain the effect intuitively.

Main Idea: It is more natural to interpret the effect of an action in terms of
its influence on the agents’ behavior and the environment dynamics.

Framework: Multi-Agent Markov Decision Processes (MMDPs) and SCMs.

Bilevel Decomposition Approach: Attribute to each agent and subsequent
state variable a score reflecting its respective contribution to the TCFE.

(Level 1) Causal Explanation Formula

Theorem: TCFE is equal to the t-ASE minus the SSE of the reverse transition.
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(Level 2a) Decomposing the t-ASE

Agent-Specific Effect (ASE) [2]

ASE-SV: Uses Shapley value to attribute t-ASE to the agents based on ASE.

Theorem: ASE-SV is a unique attribution method for t-ASE that satisfies
efficiency, invariance, symmetry and contribution monotonicity.

(Level 2b) Decomposing the (reverse) SSE

Intrinsic Causal Contribution (ICC) [3]: The ICC of an observed variable X to a
target variable Y measures the reduction of uncertainty, here variance, in Y
when conditioning on the noise variable UX.

r-SSE-ICC: Attributes r-SSE to the state variables based on their marginal ICC
to the counterfactual outcomes related to the computation of the effect.

Properties: r-SSE-ICC is efficient and does not require modifying the causal
mechanisms of the underlying environment.

Environments: Two-agent Sepsis management simulator and a Gridworld
environment with LLM-assisted RL agents.
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Step 15

Outcome: -

Step 10

Example Scenario. We estimate that if the clinician had not followed the
Al’s recommendation at time-step 10, the treatment would have been
successful with an 82% likelihood, i.e., TCFE = 0.82.
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Gini coefficient distribution over r-SSE-ICC scores



