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Abstract

We address the challenge of explaining counter-
factual outcomes in multi-agent Markov decision
processes. In particular, we aim to explain the total
counterfactual effect of an agent’s action to some
realized outcome through its influence on the en-
vironment dynamics and the agents’ behavior. To
achieve this, we introduce a novel causal explana-
tion formula that decomposes the counterfactual
effect of an agent’s action by attributing to each
agent and state variable a score reflecting its re-
spective contribution to the effect.

1 INTRODUCTION

Applying counterfactual reasoning to retrospectively an-
alyze the impact of different actions in decision making
scenarios is pivotal for accountability. One popular such
measure is the notion of total counterfactual effects, which
quantifies the extent to which an alternative action would
have affected the outcome of a realized scenario.

In multi-agent sequential decision making, an agent’s ac-
tion typically affects the outcome indirectly. To illustrate
this, consider the problem of Al-assisted decision making
in healthcare [Lynn| [2019], where a clinician and their Al
assistant treat a patient over a period of time. Fig. [Ta]depicts
a specific example, where the treatment fails. We estimate
that if the clinician had not followed the AI’s recommenda-
tion at step 10 and administered vasopressors (V) instead of
mechanical ventilation (E), the treatment would have been
successful with an 82% likelihood. This counterfactual ef-
fect, however, propagates through all subsequent actions of
the clinician and the Al, as well as the subsequent changes
in the patient’s state. This makes the interpretability of the
total counterfactual effect more nuanced, as the change from
action to outcome can be transmitted by multiple distinct
causal mechanisms. Hence, in this work we ask:

How to explain the total counterfactual effect of an action
in multi-agent sequential decision making?

Much prior work in causality has focused on decompos-
ing causal effects [Pearl [2001]], [Zhang and Bareinboim
[2018alb] under the rubric of mediation analysis Imai et al.
[2010, |2011]], [VanderWeele| [2016], which aims to under-
stand how effects propagate through causal paths. However,
such an approach would not yield interpretability in multi-
agent sequential decision making. There can be exponen-
tially many paths connecting an action to the outcome, and
not all of them have a clear operational meaning to help
explain the effect intuitively. We instead posit that it is more
natural to interpret the effect of an action in terms of its
influence on the agents’ behavior and the environment dy-
namics. In the previous example, the total counterfactual
effect of the considered action can be decomposed as shown
in Fig.[Tb] This approach explains the effect by attributing
a score to each doctor (clinician and Al) and patient state,
reflecting their respective contributions to the overall effect.

Contribution. Focusing on Multi-Agent Markov Decision
Processes (MMDPs) Boutilier| [[1996] and Structural Causal
Models (SCMs) Pearl|[2009]], we provide a systematic ap-
proach to attributing the total counterfactual effect of an
agent’s action based on a novel bi-level decomposition.

2 LEVEL1

We utilize the MMDP-SCM framework [Triantafyllou et al.
[2024] to express MMDPs as SCMs. Given an MMDP-
SCM M with n agents, a trajectory 7 of M and a response
variable Y, we denote as TCFE,, , -4, ,)(Y|7)s the total
counterfactual effect of action a;; on Y, relative to the
factual action 7(A; ;). Here, subscripts i and ¢ denote the
corresponding agent and time-step of an action, respectively.
The first step of our approach entails a causal explanation
Sformula that establishes a relationship between TCFE and
the counterfactual effects of a; ; on Y that propagate only
through the agents and state transitions of M, respectively.
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Figure 1:|1aldepicts (part of) a simulated scenario from the two-agent Sepsis environment proposed by Triantafyllou et al.|
[2024], where the patient’s treatment fails. In the same figure, we have also included the values from a sampled counterfactual
scenario (different values are shown in orange), where the clinician’s action is fixed to override the Al at step 10. Hence, the
patient receives treatment A&V instead of A&E. |T_B| shows the results of our decomposition approach for this scenario.

We formulate these effects based on two causal quantities
inspired from prior work. Formal definitions and the proof
of Theorem 21| can be found in the Supplementary Material.

Agent-specific effects Triantafyllou et al.|[2024]. The N-
specific effect ASEaNi,M( A,.0)(Y|T)a quantifies the coun-
terfactual effect of a; ; on Y that propagates only through a
subset of agents N. ASE measures the counterfactual value
of Y in 7, had all subsequent actions of agents in N been
fixed to the values that they would naturally take under a; ¢,
and all other actions were fixed to their factual values.

State-specific effects. SSE,, , (4, ,)(Y[7) s measures the
counterfactual effect of a; ; on Y in a modified model, where
all subsequent agents’ actions are fixed to their factual val-
ues, i.e., their actions in 7. As such, SSE quantifies the
effect that propagates only through the changes in the sub-
sequent state variables and can be seen as a special case of

the standard path-specific effects/Avin et al.|[2003].

Theorem 2.1. TCFE,,, ;a, )(Y|T)nm is equal to

ASE(E";;'T’(T‘;M)(Y|T)M —SSEr (4, )an, (Y]7)r-

In words, Theorem [2.1] states that the total counterfactual
effect associated with the transition from the factual action
T(A; +) to the counterfactual action a; ; is equal to the fotal
agent-specific effect of the same transition minus the state-
specific effect of the reverse transition.

3 LEVEL 2: AGENTS

To further decompose the total agent-specific effect (t-ASE),
we propose an axiomatic framework based on agent-specific
effects for attributing the total effect to individual agents.
The set of axioms includes efficiency, which requires that
the agents’ contributions sum to t-ASE (for the complete list
see the Supplementary Material). Our attribution method,

ASE-SV, operationalizes Shapley value Shapley] with

agent-specific effects, and uniquely satisfies the set of pro-
posed axioms. More specifically, ASE-SV assigns to each
agent j € {1,...,n} a contribution score for t-ASE equal to

S ws- [ASEjfji{ (Y1)
SC{1,.n\{j}
— ASES |, -4, 0 (Y| a],

— ISl (n=|S|=1)!
= : .

where coefficients wg are set to wg —

4 LEVEL 2: STATES

To further decompose the state-specific effect of the reverse
transition (r-SSE), we utilize the notion of intrinsic causal
contributions (ICC) [Tanzing et al.| [2024], which enables
us to quantify the informativeness of the individual state
variables regarding the counterfactual outcomes related to
the computation of r-SSE. Our proposed method attributes
r-SSE to the subsequent state variables, without modify-
ing the causal mechanisms of the underlying environment.
Moreover, our method is efficient under a relatively mild
assumption: at least one state variable has non-zero ICC
(i.e., is informative about the counterfactual outcomes).

S CONCLUSION

We introduce a causal explanation formula tailored to
MMDPs, which decomposes the total counterfactual ef-
fect of an agent’s action by attributing it to the agents and
dynamics of the environment. In the extended version of
this article, we experimentally validate the interpretability
of our approach using two multi-agent environments with
heterogeneous agents: a grid-world environment, where two
actors trained with RL are instructed by an LLLM planner
to complete a sequence of tasks, and a two-agent sepsis
management simulator, depicted in Fig. [I]
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6 FORMAL DEFINITIONS

In this section we provide the formal definitions of tofal counterfactual effects, state-specific effects and agent-specific
effects, using standard terminology and notation from the SCM framework [Pearl| [2009]]. Similar to|Correa et al.| [2021]],
when random variables have subscripts we will use square brackets to denote do interventions.

Definition 6.1 (TCFE). Given an MMDP-SCM M and a trajectory 7 of M, the total counterfactual effect of intervention
do(A; 4 == a;;) onY € V, relative to reference 7(A; ;), is defined as

TCFEai,tﬂ'(Ai,t)(Y‘T)M = E[Yai,t
= E[Yai,t

I — E[Yr(a, |70
T]]w — T(Y .

Definition 6.2 (SSE). Given an MMDP-SCM M and a trajectory 7 of M, the state-specific effect of intervention do(A; ; :=
a;)onY €V, relative to reference 7(A4; ), is defined as

SSEq, ,.r(As.0) Y |T)mr = E[Ya, |75 M]ppaoy — E[Yr(a, y|7Iar
= E[Yq, |73 M| ppaocry —7(Y),

it
where I = {A; p = Ai',t’[q—(Ai/,t,)]}i’e{l,...,n},t’>t-
Furthermore, the state-specific effect associated with the reverse transition can be defined as follows

SSE; (A, )i, (YIT)ar = E[Yz(a, |75 M]ppaoy — E[Ya,,
== IED/|’7'7 M]Mdo([) — E[Yai,t

Tm
7], (D

where | = {Ai’,t/ = Ai/,t'[ai,t]}i'e{1,...,n},t'>t-

Definition 6.3 (ASE). Given an MMDP-SCM M, a non-empty subset of agents N in M and a trajectory 7 of M, the
N-specific effect of intervention do(A; ; := a; ) on Y € V, relative to reference 7(A; ), is defined as

ASEgyt,T(Ai't)(Y‘T)J\/[ == E[Y|T, M]deo(z) — E[YT(A,;‘t)h]J\I
=E[Y|r; M| paoy — 7(Y),

where I = {Ai’,t/ = T(Ai/,t’)}i’eN,t’>t U {Ai’,t’ = Ai/,t’[ai,t]}i’EN,t’>t}~
7 AXIOMS FROM SECTION

In this section, we formally state the axioms included in the framework described in Section [3] for attributing the total
agent-specific effect to the individual agents.
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Efficiency: The total sum of agents’ contribution scores is equal to the total agent-specific effect. Formally,

1,....,n
Y 4= ASE({LMU{“)(Y|T)M.
je{1,...,n}

Invariance: Agents who do not marginally contribute to the total agent-specific effect are assigned a zero contribution score.
Formally, if for every S C {1,...,n}\{j}

ASEant{,z'}&Azt)(Y|T)M - ASEaSi,t,T(A¢7t)(Y|T)M = 07

then ¢; = 0.
Symmetry: Agents who contribute equally to the total agent-specific effect are assigned the same contribution score.

Formally, if for every S C {1, ...,n}\{4, k}

ASESIYY,(VIm)ar = ASES,, a, o (VT = ASES ) (VIm)n = ASES, o, (Y17,

then ¢; = ¢y..

Contribution monotonicity: The contribution score assigned to an agent depends only on its marginal contributions to the
total agent-specific effect and monotonically so. Formally, let M, and M, be two MMDP-SCMs with n agents, if for every

SC{l,n\{i}
}

ASESY) (V1P — ASES (VI a = ASESONY (Y m)a, — ASE a0 (Y [7)ar,,

then ¢§wl > ¢§V[2.

8 PROOF OF THEOREM 2.1

In this section, we restate and prove Theorem [2.1]

The total counterfactual effect, total agent-specific effect and state-specific effect obey the following relationship

TCFEai,taT(Ai,t)(Y‘T)M = ASE[{Z;I:;,'I:EiiIf)(Y|T)AI - SSET(Ai,t)Jli,t(Y‘T)M' 2

Proof. Eq. @) follows directly from Definition [6.1] Definition [6.3]and Eq. (I)):

TCFE,, , ~(a,0)(YIT)m = E[Ya, ,|7]m — 7(Y)
= ]E[Yai’t |T]M — T(Y) + ]E[Y‘T; M]Mdo([) — E[Y|T; M]Mdo(I)

= ASE(E};,T’ZQ”) (Y|T)M - SSET(A'i,t);ai,t (Y|T)1va

where I = {Air 1 = Ay pr{a, ) Yire {1, n} ¢ >t
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